Questions On Binary Search Tree
All of the below solutions is in continuation of the Binary search Tree program which is written with this post therefore I am not passing root to every method, it is referred from the BinarySeachTree class.
Problem 1: Write a program to print the nodes by levels.
For example in below tree it should print – 6,4,9,2,5,7
This is nothing but the Breadth First search. You will have to use a Queue to track the nodes.
public void levelOrderTraversal() { Queue<Node> queue = new LinkedList<>(); Node currNode = root; queue.add(currNode); while (!queue.isEmpty()) { currNode = queue.poll(); System.out.print(currNode.value); if (null != currNode.left) { queue.add(currNode.left); } if (null != currNode.right) { queue.add(currNode.right); } } System.out.println(); }
Problem 2: Write a program to check whether a tree is Binary Search Tree or not.
You just traverse node by node and check for the Binary Search Tree conditions.
public boolean isBST(Node root) { Node curr = root; Stack<Node> stack = new Stack<>(); stack.push(curr); while (!stack.isEmpty()) { Node node = stack.pop(); if (node.left != null) { if (node.value > node.left.value) { stack.push(node.left); } else { return false; } } if (node.right != null) { if (node.value < node.right.value) { stack.push(node.right); } else { return false; } } } return true; }
Problem 3: Write a program to Find lowest common ancestor of two nodes.
For example in below tree – the lowest common ancestor for 2 and 5 will be 4, the lowest common ancestor for 4 and 7 will 6.
public Node findLowestCommonAccestor(Node child1, Node child2) { if (root == null || child1 == null || child2 == null) { return null; } while (root != null) { int value = root.value; if (value > child1.value && value > child2.value) { root = root.left; } else if (value < child1.value && value < child2.value) { root = root.right; } else { return root; } } return null; // only if empty tree }
Problem 4: Write a program to compute the size of a Binary Search Tree.
We can easily define it recursively. It will be the sizeOf(left tree) + sizeOf(right tree) + 1 (root).
public int sizeOfBinaryTree(Node root) { if (root == null) { return 0; } else { return (sizeOfBinaryTree(root.left) + 1 + sizeOfBinaryTree(root.right)); } }
Problem 5: Write a program to find largest Binary Search Tree in a tree.
public int largestBST(Node root) { if (isBST(root)) return sizeOfBinaryTree(root); else return Math.max(largestBST(root.left), largestBST(root.right)); }
Problem 5: Write a program to create mirror image of a Binary Search Tree.
public Node mirrorOfBinaryTree(Node root) { Node temp = null; if (root != null) { mirrorOfBinaryTree(root.left); mirrorOfBinaryTree(root.right); temp = root.left; root.left = root.right; root.right = temp; } return root; }
Problem 6: Write a program to check whether a BST is mirror image of other BST.
public boolean isMirror(Node root1, Node root2) { if (root1 == null && root2 == null) { return true; } if (root1 == null || root2 == null) { return false; } if (root1.value != root2.value) { return false; } else { return isMirror(root1.left, root2.right) && isMirror(root1.right, root2.left); } }
Problem 7: Write a program to find the height of a Binary Search Tree.
public int findHeight() { Queue<Node> queue = new LinkedList<>(); Node currNode = root; int level = 0; if (currNode == null) { return -1; } queue.add(currNode); queue.add(null); while (!queue.isEmpty()) { currNode = queue.poll(); if (currNode != null) { if (currNode.left != null) { queue.add(currNode.left); } if (currNode.right != null) { queue.add(currNode.right); } } else { if (!queue.isEmpty()) { queue.add(null); level++; } } } return level; }
References
Design and Analysis of Algorithm – Anany Levitin
Beginning Algorithm – Simon Harris, James Ross
Data Structures And Algorithms In Java- Robert Lafore
Introduction_to_algorithms- Corman